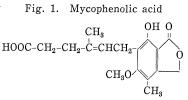
SOME BIOLOGICAL PROPERTIES OF MYCOPHENOLIC ACID

TAKAO NOTO, MIKIO SAWADA, KUNIO ANDO and Kenjiro Koyama


Research Laboratories of Chugai Pharmaceutical Co., Ltd., Toshima-ku, Tokyo, Japan

(Received for publication February 12, 1969)

Mycophenolic acid (MA) inhibits the growth of some pathogenic fungi such as *Candida albicans*, *Cryptococcus neoformans* and several species of *Trichophyton* at low concentrations *in vitro*. The antibiotic is more effective against fungi at slightly acidic pH than neutral pH. When administered to mice through the intraperitoneal, intramuscular and oral routes MA excreted to a few per cent in the urine. However, at no time was active MA detectable in the blood of mice. MA is effective against experimental trichophytosis of the guinea pigs, without noticeable skin irritation or inflammation.

Mycophenolic acid (MA) is an antifungal antibiotic found by GOSIO¹⁾ in 1896. Later, CLUTTERBUCK and OXFORD²⁾ reported that MA is produced by *Penicillium* brevi-compactum series to which GOSIO's strain belonged. The structure of MA was elucidated by BIRKINSHAW³⁾ in 1952, as shown in Fig. 1. Although ALSBERG⁴⁾ and FLOREY⁵⁾ reported some biological properties of MA, detailed studies of the biological properties have not been made.

Recent findings that MA exerts significant antiviral and antitumor activities^{6,7)} prompted us to study some biological properties of the antibiotic. In this communication we describe *in vitro* antimicrobial properties, absorption and excretion in

mice and the effect against experimental trichophytosis in the guinea pig.

Materials and Methods

Nystatin (4,180 u/mg) and griseofulvin were used as positive controls*.

The microorganisms used in this study are type cultures of our laboratory, including 54 strains of 25 species of fungi and 27 strains of 7 species of bacteria. The fungi were grown on malt extract agar (Difco, pH 5.2) supplemented with 2 % glucose. The medium for bacteria was Müller-HINTON agar medium (Eiken, pH 7.2). For determination of minimum inhibitory concentration (MIC) a 2-fold serial dilution method was used. The test organisms were inoculated by streaking to the assay media with a platinum loop from the cell suspensions of the test organisms (bacteria $10^{7.5}$ cells/ml, fungi $10^{6.5}$ cells/ml). The cultures were incubated $2\sim5$ days at 27° C for fungi and 18 hours at 37° C for bacteria.

Quantitative determination of MA; The thin-agar cylinder plate method was utilized for the quantitative determination of MA using *Candida albicans* as a test organism. The

* Nystatin and griseofulvin samples were kindly supplied by Sankyo Co., Ltd. and Nihon Kayaku Co., Ltd., respectively.

cell suspension of the test organism was mixed with malt-dextrose agar medium. The cultures were incubated at 27°C for 24 hours. The zones of growth inhibitory formed by MA slowly disappeared from the margin with time, so it is necessary to incubate precisely for 24 hours. It is possible to determine MA in the range of $6\sim100$ mcg/ml by this method.

Anti-trichophytosis activity of MA; MA was used as 5% solution in 50% ethanol and griseofulvin, the positive control, was used as 3% phenethyl alcohol solution. The hair was removed from back and both sides of guinea pigs, strain Hartley, weighing 300 ± 20 g. After exfoliation with sand-paper on naked skin, the guinea pigs were infected with a spore suspension (10⁶ spores/ml) of *Trichophyton asteroides*. The treatment was initiated 40 hours after infection, MA being given on the infected loci twice a day for 7 consecutive days. Anti-trichophytosis activity was determined by observing the symptoms caused by the infection on treated and untreated skin.

Results and Discussions

Antimicrobial Activity of MA

The antimicrobial spectra of MA are demonstrated in Tables 1 and 2. MA shows minimum inhibitory concentration (MIC) values of $3.9 \sim 31.2 \text{ mcg/ml}$ against some pathogenic fungi such as *Candida albicans*, *C. stellatoidea*, *C. tropicalis*, *C. parakrusei* and *Cryptococcus neoformans*, whereas MA shows no activity against *Candida guilliermondii*, *C. krusei*, *C. pseudotropicalis*, *Hausenula anomala* and *Saccharomyces cerevisiae*. It is noteworthy that several species of *Trichophyton* were inhibited by relatively low

Test organisms		MIC (mcg/ml)		Test organisms		MIC (mcg/ml)	
		Myco- phenolic Nystatin acid				Myco- phenolic acid	Nystatir
Candida albicans	Ca-1	7.81	0.97	Willia anomala	W-1	500	0.24
"	Ca-2	3.90	0.48	Cryptococcus neoformans	Cr-n-1	15.62	0.24
11	Ca-3	15.62	0.97	neojormans II	Cr-n-2	15.62	0.97
"	Ca-4	7.81	0.48		Cr-n-3	15.62	0.97
11	Ca-5	7.81	0.97	"	Cr-n-3 Cr-n-4		
"	Ca-6	7.81	0.48	"		15.62	0.97
11	Ca-7	7.81	0.48	<i>""</i>	Cr-n-5	31.25	0.97
11	Ca-8	7.81	0.97	Saccharomyces carlsbergensis	S-c-1	62.5	0.97
"	Ca-9	7.81	0.48	li li	S-c-2	62.5	0.97
"	Ca-10	7.81	0.97	S. cerevisiae	S-c-2 S-ce-1	500	0.97
"	Ca-15	15.6	0.97	J. Cerebiside		500	0.49
1/	Ca-17	15.6	0.48		S-ce-2 Mi-c-1		0.48
C. guilliermondii	Ca-g-1	500	0.97	Microsporum canis		31.25	1.95
<i>II</i>	Ca-g-2	500	0.24	M. gypseum	Mi-g-1	31.25	3.90
"	Ca-g-3	500	0.24	Aspergillus flavus	As-f-1	500	1.95
C. krusei	Ca-k-1	500	1.95	A. melleus	As-m-1	125	1.95
"	Ca-k-2	500	1.95	A. amstelodami	As-a-1	7.81	
C. parakrusei	Ca-pk-1	31.25	0.48	A. chevalieri	As-c-1	250	3.90
11	Ca-pk-2	62.5	0.97	A. fumigatus	As-f-1	500	7.81
C. tropicalis	Ca-t-1	7.81	0.97	Trichophyton mentagrophytes	T-m-1	15.62	1.95
<i>II</i> .	Ca-t-2	15.6	0.48	T. rubrum	T-r-1	15.6	
"	Ca-t-3	7.81	1.95	T. schoenleinii	T-s-1	500	7.81
C. pseudotropicalis	Ca-pt-1	125		T. ferrugineum	T-s-1 T-f-1	15.6	1.95
	Ca-pt-2	500	0.48	T. asteroides	T_{-a-1}	15.6	1.95 1.95
<i>II</i>	Ca-pt-3	500	1.95	1. asterotaes	1-a-1	15.0	1.95
C. stellatoidea	Ca-s-1	3.90	0.24				

Table 1. Antifungal activity of mycophenolic acid and nystatin

THE JOURNAL OF ANTIBIOTICS

Test organisms		MIC (mcg/ml)	Test organisms	MIC (mcg/ml)	
Staphylococcus aureus	209 P	31.25	Staphylococcus epidermidis	S-5	125
"	209 P(R)	125	Shigella flexneri	2 a	>500
11	Terajima	62.5	"	2 b	>500
"	188	62.5	Proteus vulgaris	OX-K	250
11	Kusama	125	1/	0X-2	500
"	B-5	31.25	Escherichia coli	B-19	>500
11	B-8	31.25	"	C-6	>500
11	B-9	125	Pseudomonas aeruginosa	Ps-1	>500
17	B-15	31.25	"	1905	>500
11	B-19	31.25	Salmonella enteritidis	S-1	>500
11	B-43	125	"	S-2	>500
η	B-46	125			

Table 2. Antibacterial activity of mycophenolic acid

Table 3. Effect of pH of medium on the activity of mycophenolic acid against various test organisms

Test organisms		MIC (mg/ml)				MIC (mg/ml)	
		pH 5. 2	pH 7.3	Test organisms		pH 5. 2	pH 7.3
Candida albicans	Ca-3	6.25	200	Saccharomyces calsbergensis	S-c-1	200	>200
"	Ca-6	6.25	200	Microsporum canis	Mi-c-1	12.5	100
C. parakrusei	Ca-pk-1	12.5	>200	Aspergillus amstelodami	As-a-1	12.5	50
C. tropicalis	Ca-t-1	12.5	>200	Trichophyton mentagrophytes	T-m-1	6.25	25
C. stellatoidea	Ca-s-1	12.5	100	T. asteroides	T-a-1	6.25	50
Cryptococcus neoformans	Cr-n-1	12.5	200				

Table 4. Effect of inoculum size on the activity of mycophenolic acid against various test organisms

Test organisms	Inoculum size (cells/ml)	MIC (mcg/ml)	Test organisms	Inoculum size (cells/ml)	MIC (mcg/ml)
Candida albicans Ca-4	10^{8} 10^{7} 10^{6} 10^{5}	125 15.6 7.8 3.9	Candida krusei Ca-k-2	10 ⁸ 10 ⁷ 10 ⁶ 10 ⁵	>125 >125 >125 >125 >125
Candida parakrusei Ca-pk-1	$ \begin{array}{r} 10^8 \\ 10^7 \\ 10^6 \\ 10^5 \end{array} $	>125 62.5 31.2 31.2	Candida guilliermondii Ca-g-1	10 ⁸ 10 ⁷ 10 ⁶ 10 ⁵	>125 >125 >125 125 125
Saccharomyces carlsbergensis S-c-2	10 ⁸ 10 ⁷ 10 ⁶	>125 125 31.2	Candida pseudotropicalis Ca-pt-3	10 ⁸ 10 ⁷ 10 ⁶	>125 >125 >125 >125
Cryptococcus neoformans Cr-n-3	10 ⁸ 10 ⁷ 10 ⁶ 10 ⁵	125 7.8 7.8 	Willia anomala W-1	10 ⁸ 10 ⁷ 10 ⁶ 10 ⁵	>125 >125 >125 >125 >125

concentration (15.6 mcg/ml). The antifungal spectrum of MA is specific and the activity is not as strong as nystatin which inhibited the growth of all fungi tested at concentrations of $0.2\sim7.8$ mcg/ml.

MA shows moderate inhibition of *Staphylococcus aureus* but the other bacteria tested were insensitive. Most antifungal agents now used are highly toxic to mammals. It is interesting that the acute toxicity of MA is so low that mice could well-tolerate a single intraperitoneal injection of 1,000 mg/kg.⁷⁾

The MIC values of MA against sensitive fungi depends on pH of the assay media and the inoculum size of the test organisms (Tables 3 and 4). For example, several *Candida albicans* strains were inhibited at 6.3 mcg/ml at pH 5.2 but grew normally at pH 7.3 even in the presence of 200 mcg/ml of MA. MIC of MA for *Cryptococcus neoformans* was raised over 16 fold when the inoculum size increased from 10^7 to 10^8 cells/ml.

Absorption and Excretion

Table 5 shows that MA activity was recovered from urine after administration either intraperitoneally, intramuscularly or orally. Upon intramuscular administration of 250 mg/kg of MA urine levels of 42.5 mcg/ml were found after 30 minutes and 27.5 mcg/ml was still excreted in urine after 6 hours (Teble 5).

Table 5.	Bio-assay values in urine after
	administration of mycophenolic
	acid to mice

Dose (mg/kg)	Route	Urine concentration (mcg/ml)							
		30 minutes	1 hour	3 hours	6 hours				
250	ΙM	42.5	11.5	37.5	27.5				
250	ΙP	10.0	17.5	6.0	_				
500	РО	37.5	6.0	13.5	15.5				

The result is given by the mean of 5 animals. Test organism : *Candida albicans* Ca-4

However, no MA was detectable in the blood at any time post administration. This contradictory fact suggests that MA might be present in the blood bound with serum protein, showing no growth inhibitory activity. Although some MA was excreted in the urine, the total sum of recovered presented only a few per cent of the initial dose.

Effect against Experimental Trichophytosis

MA suppressed the symptoms caused by infection of Trichophyton asteroides without

						-
Treatment	Dose	Animal No.	Curative rate*	Redness	Scale	Stimulus
None (Control)		1 2 3	0	# ++ ++ # # # ++ ++ ++	++ ++ ++ ++ ++ ++ ++ ++ ++	
Griseofulvin (3 % soln.)	0.2 ml/part b. i. d.	4 5 6	100 %			
Mycophenolic acid (5 % soln.)	0.2 ml/part b. i. d.	7 8 9	27.7 % 16.6 % 23.5 % (22.6 % in average)	+ + - + + + 		

Table 6. Effect of mycophenolic acid on experimental tricophytosis in guinea pigs

* Guinea pigs were sacrificed after treatment to remove small pieces of infected skin (three pieces from back and both abdominal sides of each animal). Each small piece was divided equally into 6 portions to inoculate them onto SABOURAUD agar plates added with penicillin and streptomycin. The fungal growth was examined, after 1-week incubation at 27°C, and the curative rate was calculated as follows:

 $Curative rate (\%) = \frac{\binom{\text{Total number}}{\text{of skin pieces}} - \binom{\text{Number of skin pieces}}{\text{indicated fungal growth}} \times 100 (\%)$

irritation and inflammation to the skin (Table 6). When small pieces of treated skin were incubated at 27° C for 7 days on a suitable medium. 77.4% of the pieces possessed

were incubated at 27° C for 7 days on a suitable medium, 77.4 % of the pieces possessed viable *T. asteroides*. This fact indicated that MA is a fungistatic agent rather than a fungicidal one. Since the symptoms caused by the proliferation of the fungus were suppressed, the growth of the organism was inhibited as long as MA was present, but once MA was removed from the treated skin, the fungus began to grow again. Thus, MA shows moderate inhibitory activity against experimental trichophytosis of guinea pigs without adverse side-effects. However, usefulness will be limited because of the fungistatic nature of the compound.

Acknowledgement

The authors express their sincere thanks to Dr. T. AKIBA, Director of Research Laboratories of Chugai Pharmaceutical Co., Ltd., for his advices during the study and in preparing the manuscript.

References

- GOSIO, B.: Ricerche bacteriologiche e chimiche sulle alterazioni del mais. Rivista Igiene Sanita Publica Ann. 7: 825~868, 1896 quoted from FLOREY, H. W.; K. GILLIVER, M. A. JENNINGS & A. G. SANDERS: Mycophenolic acid. An antibiotic from *Penicillium brevi-compactum* DIERCKX. Lancet 1946-1: 46~49, 1946
- CLUTTERBUCK, P. W.; A. E. OXFORD, H. RAISTRICK & G. SMITH: Studies in the biochemistry of micro-organisms. The metabolic products of the *Penicillium brevi-compactum* series. Biochem. J. 26: 1441~1458, 1932
- 3) BIRKINSHAW, J. H.; H. RAISTRICK & D. J. Ross: Studies in the biochemistry of micro-organisms. The molecular constitution of mycophenolic acid, a metabolic product of *Penicillium brevi-compactum* DIERCKX. III. Further observations on the structural formula from mycophenolic acid. Biochem. J. 50: 630~634, 1952
- ALSBERG, C. L. & O. F. BLACK: Contribution to the study of maize deterioration. U. S. Dept. Agr. Plant Industry Bull. 270: 7~48, 1913
- FLOREY, H. W.; K. GILLIVER, M. A. JENNINGS & A. G. SANDERS: Mycophenolic acid. An antibiotic from *Penicillium brevi-compactum* DIERCKX. Lancet 1946-1: 46~49, 1946
- 6) ANDO, K.; S. SUZUKI, G. TAMURA & K. ARIMA : Antiviral activity of mycophenolic acid. Studies on antiviral and antitumor antibiotics. IV. J. Antibiotics 21: 649~652, 1968
- 7) WILLIAMS, R. H.; D. H. LIVELY, D. C. DELONG, J. C. CLINE, M. J. SWEENEY, G. A. POORE & S. H. LARSEN: Mycophenolic acid. Antiviral and antitumor properties. J. Antibiotics 21: 463~464, 1968